M1. (a)	Appar	rent magnitude at a distance of 10pc Allow "brightness". Do not allow luminosity or magnitude.	1
	(b)	Absolute magnitude from 15 to -10 Temperature from 50 000K to 2500K Allow 15 to -15. Allow 50 000 to 3500 K.	2
	(c)	(i) S at 5700 K and abs mag 5 The position of S should be consistent with the scales on the axes. Allow ce on scale. Allow 6000 for T. If labels not present, or if only correct extreme values on scale, S should be to the right of and below the centre.	1
		(ii) W at same abs mag as S, but further to left Judgements on ii – iv should be based on the position of S. If S is not labelled, it should be based on where S should be.	1
		(iii) X at same temperature as S but greater absolute magnitude	1
		(iv) Y at same abs mag or above S, on the right hand side of the diagram	1
	(d)	Similar power output ✓ but is hotter ✓ Ref to P = σAT⁴ hence W must have smaller diameter than the Sun ✓ Allow luminosity for Power. Answer must be supported to get the mark.	³ [10]

- M2.(a) (i) Similarity both would appear the same <u>brightness</u>
 As the apparent magnitudes are the same ✓

 Description and explanation needed for mark.

 Any references to same size gets zero for 1st mark.
 - Difference Kocab would appear orange / red, Polaris yellow / white Due to their spectral classes / different temperatures

 **Allow different colours + ref to spectral class for second mark If colour named, should be correct.

(ii) Polaris is further from Earth:

Alternative:

Polaris hotter and same size

Both stars same size and Polaris is hotter ✓

As $P = \sigma AT^4$

Hence, Polaris has brighter absolute magnitude / is intrinsically brighter

Same A, would mean that Polaris has greater power output. ✓

Polaris must be further from Earth to appear same brightness as Kocab. ✓ Same apparent brightness, therefore Polaris is further away.

(b) (i) v = Hd

$$v = 0.025 \times 3 \times 10^{5} = 7.5 \times 10^{3} \text{ km s}^{-1} \checkmark$$

1st mark is for calculating v

d =
$$340 \times 10^{6}$$
 l yr = $340 / 3.26$ Mpc = 104 Mpc \checkmark 2^{nd} mark is for working out d in Mpc

H =
$$7.5 \times 10^{3} / 104 = 72 \text{ kms}^{-1} \text{ Mpc}^{-1} \checkmark$$

3rd mark is for calculating H in the correct unit.

(ii) Age of Universe = 1 / H

1st mark is for the equation

3

3

2

$$= 0.014 \times 10^6 \times 3.26 \times 9.5 \times 10^{15} / 1000$$

2nd is for the answer with working

=
$$4.3 \times 10^{17}$$
 seconds

(= 13.6 billion years)

Unit consistent with calculation.

3rd is for a time unit consistent with their answer / working

[11]

M3. (a) (i) the brightness of a star as it would appear from a distance of 10 pc $\sqrt{}$

(ii) Betelgeuse

Bellatrix is actually a lot brighter than Betelgeuse (the absolute magnitude is a lot more negative), but only appears to be a bit brighter (the apparent magnitude is only a little smaller) so Betelgeuse must be closer \checkmark

1

(b) (i) use of
$$\lambda_{max} T = 0.0029$$
 gives $\lambda_{max} = 0.0029/22\ 000\ \checkmark$ = $1.32 \times 10^{-7}\ (m)\ \checkmark$

2

steeper LHS than RHS ✓

intensity goes towards zero as the wavelength goes to end of axis \checkmark

3

(c) (i) B √

1

(ii) helium √

1

1

(iii) temperature too low (for atmosphere of Betelgeuse to have hydrogen in n=2 state) \checkmark

[10]

- **M4.** (a) (i) Segin: spectral class B is hottest **(1)**
 - (ii) Shedir: class K is closest towards red end (1)
 - (iii) Shedir: 2.2 is smallest value of apparent magnitude (1)
 - (iv) Achird: apparent magnitude lower (brighter) than absolute magnitude and they are equal when star is 10 pc away (1)

4

3

- (b) (i) (use of $m M = 5 \log(d/10)$ gives) $2.2 (-4.6) = 5 \log^{\left(\frac{d}{10}\right)}$ (1) d = 229 pc (1)
 - (ii) (use of $\lambda_{max}T = 0.0029$ gives) $\lambda_{max} = \frac{0.0029}{12000} = 2.4(2) \times 10^{-7}$ m (1)

[7]

- **M5.** (a) (i) P has the lowest peak wavelength (λ_{max}) (1) (since) $\lambda_{max}T$ = constant, lowest λ_{max} means highest T (1) [or P has highest peak intensity (1) intensity is power per unit area, or ref to Stefan's law (1)]
 - (ii) $\lambda_{max} = 300 \times 10^{-9} (m)$ (1) (use of $\lambda_{max} T = 0.0029$ gives) $T = 9.7 \times 10^{3} \text{K}$ (1) (9.67 × 10³ K)

max 3

- (b) (i) A and B (1)
 - (ii) light from the star passes through the atmosphere of the star (1) which contains hydrogen with electrons in n = 2 state (1) electrons in this state absorb certain energies and (hence) frequencies of light (1) the light is re-emitted in all directions, so that the intensity of these frequencies is reduced in any given direction, resulting in absorption lines (1)

max 4

[7]